
Partial dynamical symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L1265

(http://iopscience.iop.org/0305-4470/25/23/001)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A Math. Gen. 25 (1992) L1265-Ll271. Printed in the UK 

LE’ITER TO THE EDITOR 

Partial dynamical symmetry 

Y Alhassidt and A Leviatant 
Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, 
C N  06511. USA 

Received 5 May 1992 

Kbsinei. A novei type o i  Symmetry siructure, which we caii ‘partiai dynamicai symmeiry’, 
is discussed. A general algorithm is presented to canstrun Hamiltonians with such sym- 
metry, for any semisimple group. These Hamiltonians are not invariant under that group, 
and various irreducible representations are mixed in their eigenstatcs. However, they possess 
a subset of eigenstates which do have good symmetry and can therefore be labelled by the 
irreducible representations of that group. The eigenvalues and wavefunctions of these states 
are given in closed form. An example of a Hamiltonian with a partial SU(3) symmetry is 
provided.. 

Symmetry plays an important role in solving for the eigenstates of the Hamiltonian. 
In a basis labelled by the irreducible representations (irreps) of the symmetry group, 
the Hamiltonian matrix admits a block structure such that inequivalent irreps do not 
mix. Furthermore, eigenstates which belong to  the same irrep of the symmetry group 
are degenerate. Another symmeiry concepi which has been used exiensiveiy in a variety 
of problems in physics is that of a dynamical symmetry [l-31. It is a situation in which 
the Hamiltonian is written in terms of the Casimir invariants of a string of subgroups 

Go 3 . .  . 3  G 3 . .  . 3  G .  (1) 

A dynamical symmetry is characterized by the following features: (i) All eigenstates 
can be classified according to  the irreps of the groups in the chain. (ii) The wave- 
functions, eigenvalues and other observables (e.g. transitions rates) are known 
analytically. (iii) The wavefunctions do not depend on the Hamiltonian’s parameters. 
Only the last group in the chain, G, is a symmetry group of the Hamiltonian. An 
intermediate group in the chain, say G, does not leave the Hamiltonian invariant, so 
that eigenstates which belong to an irrep of G are usually not degenerate. However, 
in a dynamical symmetry the Hamiltonian commutes with the Casimir invariants of 
the groups in the chain, so that states which belong to different irreps are not mixed. 
The Hamiltonian still has a block structure in a basis characterized by the irreps of 
the groups. 

In applications of group theoretical methods to Iealistic systems one often finds 
that the assumed symmetry is only approximate and is fulfilled by only some of the 
states but not by others. In this letter we explore a particular type of symmetry breaking 
which is a generalization of the concept of a dynamical symmetry. It is a situation in 
which only some of the eigenstates of the Hamiltonian exhibit the previously mentioned 
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properties (i)-(iii). We refer to such a symmetry structure as 'partial dynamical 
symmetry'. A Hamiltonian with the above property is not invariant under the group 
G, nor does it commute with the Casimir invariants of G, so that various irreps are in 
general mixed in its eigenstates. However, there is a subset of eigenstates for which 
no such mixing occurs. These states can still be labelled by irreps of G, and their 
eigenvalues and wavefunctions are known analytically. A case of an approximate 
partial dynamical symmetry was noticed in the problem of the hydrogen atom in a 
magnetic field. A dynamical symmetry that exists for weak fields [4], is broken at 
strong fields except for the quasi-Landau levels [5]. A Hamiltonian with partial SU(3) 
symmetry and others appears in the study [6] of intrinsic structure in the interacting 
boson model of nuclei [ 11. The purpose of this letter is to raise this empirical phenomeon 
which occurs naturally in the above systems to the level of an exact, general and novel 
concept. Fuythermore, we shall present a general algorithm for constructing Hamil- 
tonians with partiai dynamicai symmetry G, for any semisimpie group G, which stiii 
have G' (G2G') as their symmetry group. For simplicity we take G'-0(3).  We shall 
demonstrate our general procedure for a Hamiltonian with a partial SU(3) symmetry. 
We note that, though we are discussing the breaking of a dynamical symmetry, the 
construction presented below can also be used to generalize the concept of symmetry 
to that of a partial symmetry. 

A semisimple algebra G (of rank I) can be described [7] in terms of its Cartan 
basis composed of maximally commuting subset of generators H, (i  = 1 , .  . . , I) and 
ladder operators E,, for any root a =(a,, . . . , a,) defined by [ H a ,  E.] = a&. An irrep 
of G can be described in a basis of common eigenstates IA) of the H, with weights 
A = ( A , ,  . . . , A , ) ,  (.YlA)= AJA)). The highest weight A is used to characterize the 
corresponding irrep. The representation which is conjugate to [A] is denoted by [AI*. 
Its weights are obtained by reversing the sign of the weights of [A]. so that [A]* can 
be characterized by its lowest weight -A. 

The building blocks of our construction are: 
(i) A vacuum state Ivac), which is assumed to be a lowest weight vector -Ao in 

the irrep [Ao]* of G. It therefore satisfies 

E-Jvac) = 0 for all positive roots a. (2) 

(ii) The components Till* of an irreducible tensor operator under the group G 
belonging to the representation [A]. Henceforth, to keep the notation simple, we shall 
denote TInli by Tk. The highest weight component of T is then TA. Note that T: 
transform according to the irrep [A]*, and that T', is a lowest weight component in 
that representation satisfying 

[E-,,T',]=O for all a > 0. (3) 

Our algorithm is based on requiring the vacuum Ivac), and the highest weight 
component TA, to satisfy the following conditions 

[ r , ,  ~',]lvac) = alvac) 
(4) 

TAlvac) = 0 

[[TA, T!J, T!J= bTi 

where a, b are constants. In the example given below we shall see that it is possible 
to satisfy such conditions. 
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Using the properties of the algebra and of the tensor operator it is possible to show 
that the following relations result from (4): 

( 5 )  

for any positive root a. To get the first relation we use (2), while the other two relations 
are obtained by using the Jacobi identity once and twice respectively, together with 
properties (2) and (3). Equations ( 5 )  are similarily satisfied when [ E - , ,  TA] is replaced 
by [E7,. . . , [E-8 ,  [E-,, TA]] . . .] for any positive roots a, p, . . . , y. Since any weight 
vector can be obtained from the highest one by a linear combination of such repetitive 
applications, it follows that 

[E-,, TJvac)=O [ [ E - . ,  TA], T?&ac)=o 

[[[EL, T.1, Til, Ti l=  0 

TAlvac) = 0 

[[TA, TLI, Ti1 = 0 

[TA, TL]lvac) = 0 
(6) 

for all A # A. 
Equations (4) and (6) can be viewed as a generalization of the conditions satisfied 

by harmonic oscillators operators. Note, however, that the first two relations in (4) 
and (6) are not an operator identity and that no further assumption is made on the 
vacuum state nor on the operator TA,  which may be composite objects. 

Consider the sequence of states 

Ik)m(TL)*lvac). (7) 
Due to (4) these are eigenstates of TLT,, and because of (6) they have the property 
that TJk)=O for any A # A .  We conclude that Ik) are exact eigenstates of any 
Hamiltonian of the form 

H =  LAATIT,+ 1 h,,T:T, (8 )  
A.C*A 

with eigenvalues 

E* = hAA[kn + fk(k - l)b] (9)  

that are independent of the parameters hkm. It is straightforward to show that (k) is 
the lowest weight vector in the representation [Ak]*=[Ao+kA]* of G. Since for a 
general set of coefficients h,,, the Hamiltonian (8) is not a G scalar, all of its eigenstates, 
except Ik), will be a mixture of irreps of G. We have thus accomplished our initial 
goal, except that the Hamiltonian (8) is generally not rotational (or G') invariant. To 
remedy that, we decompose the tensor operator TA into rotational tensor operators 
TLhs of good angular momentum L and projection M. We can then construct rotational 
scalar Hamiltonians 

where we have omitted possible multiplicity indices of the representations. If in addition 
we assume that the highest weight vector A has a well defined, multiplicity-free, E-value 
in the decomposition to 0(3) ,  then (10) is ofthe form (8) with A A A  = h i .  1k)are therefore 
eigenstates of the scalar Hamiltonian (10). When E # O  and/or Ivac) does not have 
zero angular momentum, the states Ik) do not have good L. The O(3)  symmetry is thus 
spontaneously broken in the sense that the eigenstates Jk) do not have the same 
symmetry as the Hamiltonian. States of good angular momentum can be obtained by 
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projection from Ik). Since H is a scalar, the projection operator commutes with it, so 
that the projected states l[Ak]L, M )  are also eigenstates of (10). A special case for (IO) 
may be a Casimir invariant of G for which a dynamical symmetry occurs. However, 
with arbitrary coefficients h,, a generic Hamiltonian in (10) is not a G scalar, yet a 
subset of its eigenstates l[AklL, M) are characterized by good quantum numbers of 
G 3 0 ( 3 ) .  It should be noted that these special states belong to particular irreps of G 
(of the form [Ao+ kA]’), and in general they span only part of these irreps, i.e. other 
states, originally in these special irreps, no longer have good G symmetry. We also 
note that the above discussion holds for any compact group G (replacing 0(3) ) ,  since 
appropriate projection operators can he constructed in such a case. 

To illustrate the general formalism, we use the interacting boson model [ 11, widely 
used for the description of collective states in nuclei. The building blocks of the model 
are one monopole boson (st) and five quadrupole bosons ( d ; ) .  The bilinear combina- 
tions of one creation operator and one annihilation operator generate a U(6) algebra. 
The Hamiltonian contains scalar interactions which conserve the total number of 
bosons N. One of the possible dynamical symmetries of the model corresponds to the 
chain [l] U(6) 3SU(3)  z O ( 3 )  which describes rotational nuclei. Thus the groups G 
and G‘of equation (1) are SU(3) and 0 ( 3 ) ,  respectively. We now construct Hamiltonians 
with partial SU(3) dynamical symmetry, following the general algorithm presented 
above. 

SU(3) is a semisimple group of rank two [8 ] .  The vacuum state Ivac) is taken to 
be a condensate of N bosons of the form ~ ~ ) = ( N ! ) - ’ ’ ~ [ ( s ~ + ~ d ~ ) / ~ l ~ ~ O ) ,  where 
10) is the boson vacuum of the model (no bosons). The condensate IC) is a lowest 
weight state [9]  in the (2N, 0 )  irrep of SU(3) and is thus annihilated by  the ladder 
operators [E] T - ,  U- and V+ which correspond to the negative roots (equation (2)). 
The desired SU(3) tensor operator T i  is constructed from boson pair operators of 
angular momentum L = 0 and 2 

P : = d ’ . d t - 2 ( s t ) ’  P : , = f i  s t d L + d  ( d t d t ) z ’ .  ( 1 1 )  

They transform under SU(3) as the (0,2) irrep. The operators Po and P2+ transform 
like the irrep (2,O) and correspond to the TA. The highest weight component is TA = PZz. 
A straightforward calculation shows that P,,, and the condensate IC) satisfy the basic 
conditions (4) for any N with o = 6 N + 9  and b = 12. It then follows that relations ( 6 )  
are also satisfied, where TA is replaced by Po or PZp ( p  # 2). In analogy with (10) we 
consider the following O(3) scalar Hamiltonian 

H = hoP:Po+ h, 1 P:,P2, 
P 

where ha, h, are arbitrary constants. This Hamiltonian appeared previously [6] as an 
intrinsic Hamiltonian for which the condensate IC) is an exact eigenstate. For hz= 2ho, 
H is an  SU(3) scalar related to its quadratic Casimir invariant, while for h2 = -2ho/S, 
H is a (2,2) tensor component. Thus, for arbitrary ha and h,, H is not an SU(3) scalar. 
Nevertheless, an SU(3) partial symmetry exists, since the sequence of states (see 
equation (7)) 

Ik)~(P:, , )*lc)  (13 )  

are eigenstates of (12) and continue to have good SU(3) symmetry. Their eigenvalues 
are independent of ha and are given by ( 9 )  with h,, = h,. 
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In order to preserve the total boson number N, we can take in (13) a condensate 
with N - 2 k  bosons. In doing so we obtain a set of deformed states 191 which are 
lowest weight states in the SU(3) irreps (2N-4k, 2k) with 2 k s  N. In the nuclear 
physics terminology [8,9] they are referred to as ‘intrinsic states’ associated with 
rotational bands of an axially deformed nucleus. They have well defined angular 
momentum projection ( K  =2k) along the symmetry axis and represent y* bands. (Here 

particular, Ik=O) represents the ground-state hand ( K  =0) and ( k =  1) is the y-hand 
( K  = 2). The intrinsic states break the O(3) symmetry. Eigenstates of (12) with good 
angular momentum L a  K (and good SU(3) symmetry), l(2N -4k, 2k) K = 2k; L, M), 
are obtained by angular momentum projection. 

An example of this SU(3) partial dynamical symmetry is displayed in figure 1 for 
N = 7 bosons. Typical spectra of the Hamiltonian (12) are shown for two cases: (a) 
h2=2ho and (b) h2=  1.25ho. Case (a) corresponds to a full SU(3) symmetry and all 
states are arranged in degenerate SU(3) multiplets. For case (b) the SU(3) symmetry 
is broken, so that most of the eigenstates have a mixture of SU(3) irreps and the above 
SU(3) degeneracy is lifted. However, some of the eigenstates (marked by a + in figure 
1 )  continue to carry good S U ( 3 ) 3 0 ( 3 )  representation labels and are arranged in 
multiplets. Within each such multiplet the L degeneracy can be lifted by adding the 
Casimir invariant of O(3) (L’) to the Hamiltonian (12), contributing an L(L+l)  
splitting. The SU(3) symmetry of case (a) then becomes an SU(3) dynamical symmetry, 
with rotational hands built on each of the SU(3) irreps. In case (b) we obtain an SU(3) 
partial dynamical symmetry. The ground-state K = 0 hand continues to carry good 
SU(3) labels (14,O). The P ( K  = 0) and y ( K  = 2) bands, which originally were degener- 
ate in the SU(3) dynamical symmetry limit (and belonging to the (10,2) representation), 
split. Only the members of the y-band continue to carry good SU(3) labels (10,2), 
while the p-hand has a mixture of several SU(3) irreps. Similarly, the y 2 ( K  = 4) band 
and the y’(K = 6) bands preserve their SU(3) character. All other states exhibit mixing. 

To further visualize the phenomena of partial dynamical symmetry, we show in 
figure 2 the SU(3) content of three eigenstates of case (h). These are the seventh and 

m d  i.. WhZ! fn!!n..w, ,B azd y den& the q-ph-pn!e defe-.-atlon paraF.e!ers.) !E 

E 
(0.4) - 
(4.2) - - - - - - 

0 6 10 i 

FIgwe I. Spcclra (energy E versus angular momentum L) of the Hamiltonian (12). 
( a )  For h,lh,=2. SU(3) symmetry labels (A,p) are shown on the left. Some levels with 
L#O exhibit multiplicity which is not shown. ( b )  For hJh,=I.ZS. Levels which continue 
to exhibit SU(3) symmetry are marked by a + symbol. The energy scale is arbitrary and 
the same value of h, was used in both cases. 
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I 

eighth L = 6 states and the fourth L = 0 state, all of which have a dominant (2,6) 
component. The state L = 61 is one of the solvable states in the yl( K = 6) band and 
is 100% in the (2,6) irrep. The state L=6* which in case (a) was a pure (2,6) state, 
degenerate with L=61, is now a mixture of several SU(3) representations and only 
73% (2,6). Other states are even more strongly mixed; the fifth L=O state in case (a) 
which belonged to the irrep (2,6), had crossed the fourth L=O level to become the 
L=04  level of case (b). It has only 51% in the irrep (2,6) and exhibits a significant 
spread over six SU(3) irreps. 

To conclude, we have presented an algorithm to construct Hamiltonians which 
possess partial dynamical symmetry when the Hamiltonian does not have good sym- 
metry, but a subset of its eigenstates do. One of the striking features of such Hamil- 
tonians is the possibility that these states span only part of the corresponding irreps. 
This is not the case in the quasi-exactly solvable Hamiltonians Constructed recently 
[lo], in which the solvable states form complete representations. The coexistence of 
solvable and unsolvable states, together with the availability of an algorithm, distinguish 
the notion of partial dynamical symmetry from the notion of accidental degeneracy 
[ll], where all levels are arranged in degenerate multiplets. Additional examples of 
partial dynamical symmetry will be given in a longer publication [12]. The concept of 
partial dynamical symmetry may play an important role in exploring systems which 
exhibit both regular and irregular behaviour, and in constructing models of complex 
systems in which some of the elementary excitations are described by solvable states. 

We thank F Giirsey and F Iachello for useful comments. This work was supported in 
part by DOE contract DE-FG-0291ER-40608. 
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